Item 2 2910 N Montana

Michael Alvarez, Planner II **Community Development Department** 316 North Park Avenue, Room 403

Helena, MT 59623

Phone: 406-447-8459 Fax: 406-447-8460

Email: malvarez@helenamt.gov

helenamt.gov

Date: September 06, 2022

CONDITIONAL USE PERMIT

STAFF REPORT

CITY OF HELENA PLANNING DIVISION 316 North Park Avenue Helena, Montana 59632

TO: City of Helena Zoning Commission

FROM: Michael Alvarez, City Planning

SUBJECT: To make a recommendation on a resolution granting a Conditional Use Permit

> to allow a Casino use in the B-2 (Commercial) Zoning District for property legally described as Tract "A" on COS #432628/T, records of Lewis and Clark

County, Montana.

This property is located at 2910 N Montana Ave and generally occupies a tract

of land on the southwest corner of N Montana Ave and Tara Ct.

OVERVIEW

GENERAL INFORMATION

DATE OF APPLICATION: July 11th, 2022 DATE DEEMED COMPLETE: July 20th, 2022

PUBLIC HEARING DATES:

Zoning Commission: 6:00 P.M. Tuesday, September 13, 2022 **City Commission:** 6:00 P.M. Monday, October 17, 2022

PUBLIC NOTICE:

Legal notice has been published August 28, 2022 in the Independent Record; notice letters have been sent to adjacent property owners and a sign posted on the property.

PUBLIC COMMENT:

As of Tuesday, September 6, 2022 05, 2022, no public comments have been expressed regarding this proposed CUP.

Dan Casne APPLICANT:

ADDRESS: 600 S Main St, Butte, MT 59701

EMAIL: Dans@townpump.com OWNER: Helena N Montana Misc RE, LLC ADDRESS: PO Box 6000, Butte, MT 59702

EMAIL: Dans@townpump.com

SURVEYOR/ENGINEER: Casne & Associates, Inc.

ADDRESS: PO Box 1123, Helena, MT 59624

EMAIL: ryan@caneinc.com

SUBJECT PROPERTY ADDRESS: 2910 N Montana Ave, Helena, MT 59601

LEGAL DESCRIPTION: Tract "A" on COS #432628/T, records of Lewis and Clark County, Montana.

GENERAL LOCATION: This property is located at 2910 N Montana Ave and generally occupies a tract of land on the southwest corner of N Montana Ave and Tara Ct.

DESCRIPTION / BACKGROUND

This lot currently sits vacant. The last use on the lot was "restaurant, drive-in" the designation most applicable for a coffee kiosk there. The applicant is requesting a Conditional Use Permit (CUP) to allow a "casino" use in a B-2 (commercial) zoning district. The applicant plans to erect a new 16,500sf facility. The casino will occupy approximately 4,000sf (see: "Premise Exhibit") with the remainder being a convenience store supporting new gas pump islands. Per the requirements of the B-2 District a CUP is required for a casino use.

ZONING USE DEFINITIONS:

CASINO: An establishment licensed for on premises consumption of alcoholic beverages which:

A. Is licensed for and has six (6) or more video gaming machines or gambling devices; or B. Is licensed for and used to conduct any of the following types of gambling: calcutta pools, live card games, live card game tournaments, and live keno.

B-2 (commercial) district provides for compatible residential uses and a broad range of commercial and service uses that serve large areas of the City and that are normally required to sustain a community.

PRESENT LAND USE & ZONING: B-2 (commercial) – the property is mostly vacant being used to display custom sheds for sale and it houses a coffee kiosk.

ADJACENT LAND USE & ZONING:

North: B-2 (commercial) – general retail sales (Murdoch's), financial services (Valley Bank)

South: B-2 (commercial) – from east to west, casino (Lucky Lil's), Fuel Sales (existing Town Pump), general professional services -- (Eagle Electric Inc), general retail sales (Spas of Montana), multipledwelling unit residences

East: B-2 (commercial) – Shopping Center/General Retail Sales (Natural Grocers, Good Samaritan Thrift Store, Harbor Freight, Dollar Tree), casino (Gold Island Casino).

West: B-2 (commercial) – Vacant land (immediately), R-3 (residential) single dwelling-units (across National Ave)

VICINITY MAP:

REVIEW CRITERIA FOR THE CONDITIONAL USE

Section 11-3-4 of the Helena Zoning Ordinance includes certain criteria that must be reviewed as part of the conditional use permit procedure.

A. A conditional use permit may be granted by the city commission only upon a finding, supported by substantial credible evidence in the record that the following standards are met:

- 1. The proposed conditional use, as conditioned, will not adversely impact the public health, safety, or general welfare.
- 2. The proposed conditional use will not adversely impact or impair the peaceful use of existing property or improvements in the vicinity and the zoning district in which the subject property is located.

B. In considering whether sections $\S 11-3-4(A)(1)$ and (A)(2) of this chapter have been met, the following factors must be considered in determining the impacts of the proposed conditional use on the abutting properties and the neighborhood:

- 1. Location, character, and natural features of the subject property as it currently exists.
- 2. Type and size of the proposed structure and improvements and their relative location on the subject property.
- 3. Historical uses, established use patterns, and recent changes and trends in the neighborhood.
- 4. Conformity of the proposed use with the neighborhood plan, if one has been adopted.
- 5. Current and proposed pedestrian, vehicular, and bicycle traffic including ingress and egress, circulation and parking.
- 6. Whether the use is consistent with the Helena Climate Change Action Plan.
- 7. Whether the proposal meets the zoning dimensional standards requirements for the zoning district without the need for a variance.
- 8. Hours of operation.
- 9. Noise.
- 10. Glare.
- 11. *Odor.*
- 12. Expressed public opinion related to factors identified above.

C. The above factors are weighed and evaluated depending on the circumstances of each case. Any one factor may be sufficient to find adverse impacts for the purposes of Section $\S11-3-4(A)(1)$ and (A)(2) justifying denial of the permit or placement of special conditions.

FINDINGS & EVALUATION

- 1. Location, character, and natural features of the subject property as it currently exists.

 The site is located at the southwest corner of N Montana Ave and Tara Ct. The site is largely adjacent to commercial activity (see: adjacent land use & zoning section of this report). That adjacent commercial activity is largely car-oriented in its development pattern.
- 2. Type and size of the proposed structure and improvements and their relative location on the subject property.

The proposed casino would be housed inside a newly constructed 16,500sf facility. The casino will occupy approximately 4,000sf (see: "Premise Exhibit") with the remainder

being a convenience store supporting new gas pump islands.

The facility will necessitate new parking facilities with all pertinent access, landscaping, and screening required by code.

3. Historical uses, established use patterns, and recent changes and trends in the neighborhood.

The site was once occupied by the Circus Theatre. The commercial activity currently on the site is a coffee kiosk. The site also serves as display for custom sheds. This area of N. Montana Ave is typically developed as commercial enterprises almost exclusively arrived at by car. The intersection of Tara Ct and N Montana Ave is signalized.

4. Conformity of the proposed use with the neighborhood plan, if one has been adopted.

The City of Helena Future land Use map designates this area as commercial. It is zoned B-2 commercial, and other than the casino the other uses at the property *Vehicle Fuel Sales* is permitted by right at the location.

5. Current and proposed pedestrian, vehicular, and bicycle traffic including ingress and egress, circulation, and parking.

The applicant has performed a Traffic Impact Study for the location. While that study is still be evaluated by City staff, the casino use is not expected to be the major driver of traffic at the site.

The building will require the installation of new sidewalks along the frontages. This is an especially critical portion of connectivity on N Montana as this property currently interrupts the sidewalk there.

6. Whether the use is consistent with the Helena Climate Change Action Plan.

The applicant intends to do the following design elements that are in-keeping with the City of Helena's Climate Action Plan:

- a. Minimize live vegetative cover that requires landscape irrigation (water).
- b. Use low-flow fixtures (i.e. Toilets, Urinals, Faucets).
- c. Storm water design will utilize underground chambers that allows collected surface runoff (storm water) to infiltrate onsite and provide groundwater recharge.
- 7. Whether the proposal meets the zoning dimensional standards requirements for the zoning district without the need for a variance.

The proposal, as presented, meets the zoning dimensional requirements for the B-2 zoning district without the need for a variance.

8. Hours of operation.

The proposed hours of operation are 8a to 2a. N Montana Ave has motor vehicle traffic at all times and this time range would not produce an unusual or novel amount of traffic in the area.

9. Noise.

The applicant states that the proposed noise from the casino would not increase external noise. The only noise generated would be produced by the vehicles entering/leaving the parking lot. The addition of the Town Pump casino to N Montana Ave's noise producing traffic is negligible/unquantifiable.

10. Glare.

The parking lots are currently not screened from the nearby residential neighborhood. The parking lots would not need to be screened per § 11-24-5 because there is a vacant B-2 (commercial) lot between the proposed Town Pump site and the neighborhood. It is recommended that Town Pump install screening until such a time as that parcel is developed.

11. Odor.

There are no expected new odors to be produced from the casino with this proposal.

12. Expressed public opinion related to factors identified above.

As of Tuesday, 09/06/2022, no public comments have been given for this proposal.

RECOMMENDATION

To recommend **Approval** of a resolution granting a Conditional Use Permit to allow a casino use in the B-2 (Commercial) Zoning District for property legally described as Tract "A" on COS #432628/T, records of Lewis and Clark County, Montana.

This property is located at 2910 N Montana Ave and generally occupies a tract of land on the southwest corner of N Montana Ave and Tara Ct., with the following conditions:

- 1. A building permit must be submitted for within one (1) year.
- 2. Screening shall be put in place along the western lot line until such a time as the commercial property to the west is developed.
- 3. All conditions must be met within one year of CUP approval, as per Section 11-3-9 of the Helena City Code.

RECEIVED

By April Sparks at 3:23 pm, Jul 11, 2022

CONDITIONAL USE PERMIT/AMENDMENT

APPLICATION FORM
Community Development Department, Planning Division
316 North Park Avenue, Room 445

Helena, MT 59623

Phone: 406-447-8490
Fax: 406-447-8460
Website: helenamt.gov

APPLICATION FEE: \$435.00 (PAYABLE TO THE CITY OF HELENA) ALL FEES ARE NON-REFUNDABLE

APPLICANT	/REPRESENTATIVE: Primary Representa	tive? 🗆						
Name:	Dan Sampson	Primary Number:	4064976860					
Address:	600 S Main St. Butte, MT 59701	Other Phone:						
Email:	dans@townpump.com							
PROPERTY (OWNER (If different from applicant): Prin	nary Representative? 🗆						
Name:	Helena N Montana Misc RE,LLC	Primary Number:	4064976860					
Address:	PO Box 6000, Butte, MT 59702	Other Phone:	4064976700					
Email:	dans@townpump.com			·				
SURVEYOR/	ENGINEER: Primary Representative?							
Name:	Casne & Associates, Inc.	Primary Number:	4064431656					
Address:	PO Box 1123, Helena, MT 59624-1123	Other Phone:						
Email:	ryan@casneinc.com	Company:						
ADDRESS OF	FPROPERTY: 2910 N. Montana Ave.	Helena, M	Г 59601					
	Address	City	State	Zip Code				
LEGAL DESC	RIPTION OF PROPERTY (Block & Lots, S	Subdivision/Addition):						
Tract A of C	COS#3476 (Doc#432628/T), located	in NE1/4NE1/4, S19,	T10N, R3W.					
ZONING DIS	TRICT: B-2 General Commercial							
GEOCODE: 05-1888-19-1-30-40-0000								

IT IS THE POLICY OF THE CITY COMMISSION <u>NOT</u> TO ACT ON A PROPOSAL IF THE APPLICANT'S REPRESENTATIVE IS NOT PRESENT AT THE COMMISSION MEETING. City Planning Staff represents the City; staff cannot answer questions for the applicant.

The taxes and assessments on the applicant's property, which is the subject of the proposed action, must be paid or payment of said taxes and assessments must be made a condition of final approval of said action by the City Commission, with the taxes and assessments to be paid within fourteen (14) days after final passage. In the event the taxes and assessments are not paid, the proposal will be brought back before the City Commission at the next regularly scheduled meeting for reconsideration.

CONDITIONAL USE PERMIT/AMENDMENT

APPLICATION FORM

Community Development Department, Planning Division 316 North Park Avenue, Room 445 Helena. MT 59623 Phone: 406-447-8490 Fax: 406-447-8460 Website: helenamt.gov

	y and acknownedge the above sta		
INFORMATION AR	RE TRUE AND CORRECT TO THE BEST O	F MY KNOWLED	GE.
Signed:	Applicant	Date:	6-17-22
Property Owner:	(If different from Applicant)	Date:	6-17-22
Please provide a application may	ll the information requested in the And delay the review of your request.	lication Instruc	ions. An incomplete
Are you requesting	g any variances; with this application?	Yes No	
If yes, see Board of	Adjustment application.		
Have any variance	s of CUPs been previously given for this pro	operty? Yes	No
If yes, provide a cop	y of the variance decision or CUP Resolution.	NOT T	HAT WE ARE
		AWAR	

Review Process and Criteria: The following completeness review is required for applications for conditional use permits:

- A. Within ten (10) working days of receipt of an application and required filing fee, the City shall review the submitted information to determine whether the application contains all the information required by this chapter. The application is complete if all the information required is provided, thereby forming the basis for an informed decision on the application. The City shall give written notice to the applicant of the determination as to whether or not the application is complete.
- B. If the City determines that information is missing from the application, the City will identify those elements in the notification. If the applicant fails to submit the missing information within five (5) working days of the notice of deficiency, the City may deny approval of the application.
- C. If the applicant corrects the deficiencies and resubmits the application within the time provided above; the City has ten (10) working days to notify the applicant whether the resubmitted application contains all the information required by this chapter.
- D. After a complete application has been filed, the City shall investigate the facts bearing on the application to assure that the action on the application is consistent with the intent and purpose of this Title, and then give its recommendation to the Zoning and City Commission.

A CONDITIONAL USE PERMIT IS EFFECTIVE UPON APPROVAL BY THE CITY COMMISSION AND AFTER ALL OF THE CONDITIONS FOR APPROVAL HAVE BEEN COMPLETED.

YOUR PROPOSAL MUST COMPLY WITH THE FOLLOWING:

- Building and fire codes including required building and occupancy permits.
- Zoning Ordinance requirements including but not limited to minimum lot area; front, side and rear
 yard setbacks; maximum lot coverage; building height; landscaping; parking; screening; and signage.
- Sidewalks, curbs and gutters; if deteriorated, repair or replacement may be required.

CONTRACTOR OF HELE

CONDITIONAL USE PERMIT/AMENDMENT

APPLICATION FORM

Community Development Department, Planning Division 316 North Park Avenue, Room 445 Helena, MT 59623 Phone: 406-447-8490 Fax: 406-447-8460 Website: **helenamt.**gov

APPLICATION INSTRUCTIONS:

A pers	on desiring a conditional use permit shall apply to the City on the appropriate forms and
pay an	y required fees.
Type a	nd extent of the proposed use (including hours of operation)
Site pla	an showing the proposed and current location of:
L Pe	destrian, vehicular, and bicycle ingress and egress to the property; $\mathcal{A} \subset \mathcal{S} \circ \mathcal{S} \in \mathcal{E}$
Pa	rking and loading areas;
La	ndscaping and screening;
So	lid waste collection areas;
Ut	ilities;
Sig	gns; and
Li	ghting;
Propos	sed storm water drainage plan;
Traffic day:	impact study for any use that will generate more than two hundred (200) vehicle trips a
Vicinit zoning	y map of the area showing the location of the property in relation to surrounding land and in the immediate area, water and wastewater mains, other utilities, and city streets;
Planne	d modifications to the existing structure; ールロ EX/5 こ S ア R い こ て
Prelim heights	inary architectural drawings for new construction with elevations that include building
the fac	luation of the impacts on the abutting properties and the neighborhood with respect to tors identified in section 11-3-5B. The evaluation must address any potential adverse s and how any such adverse impacts will be mitigated.
Expect	ed time when the permitted conditional use will commence; and
Varian	ces requested. (Ord. 3097, 4-7-2008) - NONE
l applicati	ions for conditional use permits will be evaluated against the following criteria:
The pro	posed conditional use, as conditioned, will not adversely impact public health, safety, or welfare.
existing	posed conditional use, as conditioned, will not adversely impact the peaceful use of property or improvements in the vicinity and the zoning district in which the subject y is located.

CONDITIONAL USE PERMIT/AMENDMENT

APPLICATION FORM

Community Development Department, Planning Division 316 North Park Avenue, Room 445 Helena, MT 59623 Phone: 406-447-8490 Fax: 406-447-8460 Website: **helenamt.**gov

ne following factors must be considered in determining the impacts of the proposed conditional the abutting properties and the neighborhood. Please provide the following:	use
Location, character, and natural features of the subject property as it currently exists;	
Type and size of the proposed structure and improvements and their relative location on the subject property;	е
Historical uses, established use patterns, and recent changes and trends in the neighborhood	d;
Conformity of the proposed use with the neighborhood plan, if one has been adopted;	
Current and proposed pedestrian, vehicular, and bicycle traffic including ingress and egress, circulation, and parking;	,
Whether the use is consistent with the Helena Climate Change Action Plan;	
Whether the proposal meets the zoning dimensional standards requirements for the zoning district without the need for a variance;	
Hours of operation;	
Noise;	
Glare;	120
odor;	
Expressed public opinion related to factors identified above.	

Please include the most recent Deed for impacted property.

DATE: 7-8-22

Project: Town Pump – Helena #4 with Casino

Purpose: Conditional Use Permit for Casino Operations

SUPPORTING INFO. FOR C.U.P. APPLICATION (CASINO OPERATION)

- 1. Type and Extent of Proposed Use: Casino. Proposed use is for adult gaming. Identical use to adjacent and existing Lucky Lil's Casino located at 2900 N. Montana Ave. Proposed hours of operation: 8am 2am.
- 2. Prelim. Site Plan: See attached plan by Casne and Associates.
- 3. Prelim. Grading and Drainage Plan: See attached plan by Casne and Associates.
- 4. Traffic Impact Study: See attached by Abelin Traffic Services.
- 5. Vicinity Map: See attached. Refer to attached site plan to see approx. location of other known utilities.
- 6. Prelim Architectural Plans: See attached by CWG Architects.
- 7. Anticipated conditional use to commence (occupancy permit): September 2023.
- 8. No known reasons to request a variance at this time.

Evaluation of potential impacts (from Proposed Conditional Use) to both abutting properties and the neighborhood:

- Location, character, and natural features: The site is located at the SW corner of N. Montana Avenue and Tara Court. Adjacent to the site are many commercial buildings including Murdochs, Valley Bank, Town Pump Convenience Store, Town Pump fueling station, Lucky Lils Casino, Spas of Montana, and Eagle Electric. Many years ago, this site was the location of another commercial facility, Circus Theatre. It currently serves as a location for commercial display of custom sheds and also has a coffee kiosk. The majority of the parcel is currently paved with asphalt surfacing.
- 2. The proposed casino would be housed inside a brand-new commercial building (Town Pump convenience store). The casino is estimated at 4,000sf and the entire Town Pump building footprint is estimated at 16,500sf. The attached site plan shows where the building is proposed to sit on the property.
- 3. See #1 for historical use. There is no established use pattern as business use has been random since Circus Theatres was demolished. We are not aware of recent changes and trends in the neighborhood. N. Montana Avenue is very busy and highly used by Helena residents. Development adjacent to N. Montana is very desirable. Development at this exact location is even more desirable given the signalized intersection (N. Montana Ave. and Tara Court) that allows motorists to make safe left turns onto and from N. Montana Avenue.
- 4. We are not aware of a neighborhood plan. If one exists, we assume that the proposed use is consistent as a Lucky Lils Casino currently exists just south of this property.

- 5. Refer to the attached Traffic Impact Study for pedestrian, vehicular, and bicycle traffic info.
- 6. Helena Climate Change Policy: We do not see statements in the 2009 Plan that are directly related to actions that new businesses should/must adhere to. The following items are proposed design elements that appear to be in-line with City of Helena's Climate Action Plan:
 - a. Minimize live vegetative cover that requires landscape irrigation (water).
 - b. Use low-flow fixtures (i.e. Toilets, Urinals, Faucets).
 - c. Storm water design will utilize underground chambers that allows collected surface runoff (storm water) to infiltrate onsite and provide groundwater recharge.
- 7. A variance is not needed for the zoning dimensional standard rgt.
- 8. Proposed hours of operation: 8am 2am.
- 9. The proposed noise from gaming in the casino would not increase external noise. The only possible noise increase would come from vehicles entering/leaving the parking lot. However, given the commercial nature of this area and traffic corridor, high vehicle count on N. Montana Ave., and existing Town Pump and Casino adjacent to this property, potential increased noise is considered negligible.

10. Glare: N/A 11. Odor: N/A

12. We are currently not aware of any expressed public opinion related to the factors above for this proposed conditional approved use.

Attachments: Vicinity Map

Prelim. Site Plan

Prelim. Drainage Plan

Traffic Impact Study

Prelim Architectural Plans

Deed

VICINITY MAP #1

ZONING

VICINITY MAP #2 GENERAL AND UTILITIES

AFTER RECORDING RETURN TO:

Daniel D. Manson 600 S. Main Street Butte, MT 59701

SPECIAL WARRANTY DEED

THIS INDENTURE, made the 31st day of December, 2020, between BIG SKY PROGRESS LLC, a Delaware Limited Liability Company (the "GRANTOR"), and HELENA N MONTANA MISC RE LLC, a Montana Limited Liability Company, whose address is 600 S. Main Street, Butte, MT 59701 (the "GRANTEE"),

WITNESSETH:

That the GRANTOR, in consideration of the sum of Ten Dollars (\$10.00) and other good and valuable consideration, the receipt of which is hereby acknowledged, does hereby transfer and convey unto the GRANTEE, and to the successors and assigns of GRANTEE, forever, all of GRANTOR'S right, title and interest in and to the following real property, situated in Lewis and Clark County, State of Montana, to-wit:

PARCEL I: Tract "A" of Certificate of Survey No. 3476, filed as Document No. 432628/T, located in the NE½NE½ of Section 19, Township 10 North, Range 3 West, P.M.M., Lewis and Clark County, Montana, as shown on and according to the Official Plat thereof on File and of Record in the Office of the Clerk and Recorder for Lewis and Clark County, Montana,

PARCEL II: Tract 3 of the Sunset Drive-In Subdivision Plat No. 610, filed as Document No. 363054, located in the NE½NE½ of Section 19, Township 10 North, Range 3 West, P.M.M., in the City of Helena, Montana, as described in and according to the Official Plat thereof on File and of Record in the Office of the Clerk and Recorder for Lewis and Clark County, Montana.

PARCEL III: Lots 1 and 2, in Block 1, of the Hagler &

3370409 B: M58 P: 4800 DEED 01/07/2021 11:13 AM Pages: 1 of 2 Fees: 14.00 Amy Reeves Clerk & Racorder, Lewis & Clark MT Waddell Subdivision Plat No. 2267, filed as Document No. 381310, located in the NE¼ of Section 19, Township 10 North, Range 3 West, P.M.M., in the City of Helena, Lewis and Clark County, Montana, as shown, described and according to the Official Plat thereof on File and Record in the Office of the Clerk and Recorder for Lewis and Clark County, Montana.

Deed Ref.: Document 3099283.

Together with all the tenements, hereditaments, and appurtenances thereto belonging, and the reversions, remainders, rents, issues and profits thereof; and also all the estate, right, title, interest, property, possession, claim and demand whatsoever as well in law as in equity, of the GRANTOR, of, in or to the premises and every part and parcel thereof.

To have and to hold, all and singular, the premises, with the appurtenances, unto the GRANTEE, and to GRANTEE's the successors and assigns, forever.

GRANTOR will forever warrant and defend all right, title and interest in and to the premises and the quiet and peaceful possession thereof unto the GRANTEE against all acts and deeds of the GRANTOR and any person who may lawfully claim the premises by, through or under the GRANTOR, excepting from these warranties all restrictions. reservations, easement and/or encumbrances of record, and any visible easements or encroachments, and any taxes or assessments for 2020 and subsequent years.

IN WITNESS WHEREOF, the GRANTOR has executed this instrument the day and year first above written.

Big Sky Progress LLC

James M. Kenneally

Manager

STATE OF MONTANA

: SS.

County of Silver Bow

This instrument was acknowledged before me on this 31st day of December, 2020, by James M. Kenneally as Manager of Big Sky Progress LLC.

State of Montana Residing at Butte, Montana My Commission Expires May 16, 2024

Lucky Lil's Casino of Helena Helena 4 Lucky Lil's LLC 1150 Enterprise Dr. Helena, MT 59601 05-601-3923-301

SOUTHEAST VIEW
SALE

NORTHWEST VIEW
SCALE:

2 A11.1

5 FIRST FLOOR PLAN
SCALE: 3/64" = 1'-0"

pump

21' - 9 1/4"

40' - 7 3/4"

16' - 10"

NORTH SCHEMATIC ELEVATION

SCALE: 1/8" = 1'-0"

52' - 0"

2 EAST SCHEMATIC ELEVATION
SCALE: 1/8" = 1'-0"

SCALE: 1/8" = 1'-0"

WEST SCHEMATIC ELEVATION

SCALE: 1/8" = 1'-0"

HELENA #4 TOWN PUMP
Schematic Elevations 6/28/2022

4182-46-06 CWG Architecture 650 Power St P.O. Box 1198 Helena, MT 59624

cwg@cwg-architects.com (406)443-2340 © 2021 Crossman-Whitney-Griffin P.C.

Helena Town Pump #4 Commercial Development Traffic Impact Study

Helena, Montana

Casne & Associates Inc 664 Logan Street Helena, MT 59601

July, 2022

Table of Contents

Α.	Executive Summary	1
B.	Project Description	1
C.	Existing Conditions	
	Adjacent Roadways	
	Traffic Counts	
	Historic Traffic Data	
	Level of Service	
	Area Crash Data	
D.	Proposed Development	
E.	Trip Generation and Assignment	
F.	Trip Distribution	7
G.	Traffic Impacts Outside of the Development	7
Н.	Impact Summary & Recommendations	
	List of Figures	
Fia	ure 1 – Proposed Development Site	2
	ure 2 – Proposed Development	
	ure 3 – Trip Distribution	
, ,9		
	List of Tables	
	ble 1 – Historic Average Daily Traffic Data	
	ble 2 – 2022 Level of Service Summary	
	ble 3 – Trip Generation Rates	
Tal	ble 4 – Projected Level of Service with Development	8

Helena Town Pump #4 Traffic Impact Study June 2022 Helena, Montana

A. EXECUTIVE SUMMARY

The Helena Town Pump #4 project is a 3.97-acre combined commercial gas station and casino development located south of Tara Court and west of Montana Avenue adjacent to the site of the existing Town Pump building in Helena, MT. At full build-out, the project may produce up to 3,286 daily vehicle trips, but only half of this traffic will likely be new trips to the area. The new estimated traffic generation for the site will largely be offset by the elimination of the existing Town Pump gas station to the south and the coffee kiosk on the property. The existing known traffic congestion issues at the intersection of Custer Avenue and Montana Avenue to the north are creating some queueing and safety issues at the intersections to the south, but these conditions will not be heavily impacted by the proposed project. The project will also improve traffic roadway safety by eliminating two existing approaches into the study property. Based on the existing and estimated new traffic form the new gas station casino, no additional road improvements are currently recommended at the development site at this time.

B. PROJECT DESCRIPTION

This document studies the possible effects on the surrounding road system from the redevelopment of the existing Town Pump property along Montana Avenue in Helena, Montana. The redevelopment would include the construction of a new gas station, casino, and convenience store just north of the existing Town Pump gas station. Ultimately the existing Town Pump is expected to be closed and the property will eventually be redeveloped with a future project. This document identifies any traffic mitigation efforts that the proposed development may require.

C. EXISTING CONDITIONS

The proposed development property currently consists of a 2.41-acre lot and a 1.56-acre lot at the intersection of North Montana Avenue and Tara Court. The property includes the Town Pump building which is presently operating with 16 gas pumps. The site also includes the existing City Brew coffee kiosk which is not part of this project. The adjacent commercial properties include Valley Bank and a storage shed sales business. The properties have two existing approaches onto Montana Avenue 140 feet and 210 feet south of Tara Court. Both existing approaches to the property along Montana Avenue are southbound in/out only due to existing raised medians along Montana Avenue. The Montana Avenue corridor is under the jurisdiction of MDT including the traffic signals at Montana Avenue and Tara Court. The northern lot also has three existing

approaches onto Tara Court. See Figure 1 for a location map of the proposed development.

Adjacent Roadways

Tara Court is a local route which is maintained by the City of Helena. The road provides access to the commercial area east and west of Tara Court. The road has a paved width of 32 feet and includes on-street parking. According to traffic data collected by Abelin Traffic Services (ATS) in 2022, the roadway currently carries 2,000 VPD.

North Montana Avenue is a north/south minor arterial roadway which provides access through much of Helena. The road has a five-lane cross-section north of Custer Avenue and a posted speed limit of 35 MPH. According to traffic data collected by MDT in 2021, this section of North Montana Avenue currently carries 19,000 VPD. The intersections of Custer Avenue and Tara Court are currently signalized.

Traffic Data

The traffic data used for this report was collected on the surrounding road system by ATS in June of 2022. Traffic data was also obtained from a May 2020 count conducted by Montana Department of Transportation (MDT) at Montana Avenue and Custer Avenue. The June 2022 data was factored for seasonal variations using traffic information from the MDT continuous traffic counter along Custer Avenue at site #A-079 which indicated that the traffic data collected on June 8th and 9th was 120-130% of the AADT for this area. Refer to **Figure 1** for detail of the data collection/acquisition sites. The raw traffic data is included in **Appendix A** of this report.

Historic Traffic Data

ATS collected historic traffic data for the surrounding road system to help develop short-term background growth rates for the area. The information indicates that traffic volumes along Custer Avenue and North Montana Avenue have decreased slightly over the past ten years. The *Greater Helena Area Long Range Transportation Plan 2014 Update* suggests that Custer Avenue will see a 18% increase in traffic volumes over the next 15 years to 20,000 VPD and traffic volumes along Montana Avenue will increase 21% to 23,000 VPD.

Location	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Custer Ave.	17,140	18,140	21,590	18,960	20,454	17,778	17,735	17,841	16,592	14,049	17,140
West of MT Ave.	17,140	18,140	21,390	18,900	20,434	17,778	17,733	17,841	10,392	14,043	17,140
Custer Ave. East	20,460	23,620	27,890	22,735	27,378	23,384	22,774	22,911	21,307	19,219	20,460
of MT Ave.	20,100	23,020	27,030	22,733	27,570	23,301	22,77	22,311	21,507	13,213	20,100
MT Ave. North	19,530	21,960	23,990	19,608	23,648	20,006	18,726	18,838	17,519	18,921	19,530
of Custer Ave.	19,550	21,900	23,330	19,008	23,046	20,000	10,720	10,030	17,319	10,521	19,550
MT Ave. South	18,980	20,370	20,160	18,500	22,356	19,190	17,807	17.914	16,660	18,681	10 000
of Custer Ave.	10,980	20,370	20,160	10,500	22,330	19,190	17,807	17,914	10,000	10,081	18,980

Level of Service

Using the data collected for this project, ATS conducted a Level of Service (LOS) analysis at area intersections. This evaluation was conducted in accordance with the procedures outlined in the Transportation Research Board's *Highway Capacity Manual (HCM) - Special Report 209* and the Highway Capacity Software (HCS) version 7.9. Intersections are graded from A to F representing the average delay that a vehicle entering an intersection can expect. Typically, a LOS of C or better is considered acceptable for peak-hour conditions.

Table 2 - Existing 2022 Level of Service Summary

	AM Pea	k Hour	PM Peak Hour		
Intersection	Delay (Sec.)	LOS	Delay (Sec.)	LOS	
Custer Ave. & Montana Ave.	32.2	С	38.1	D	
Montana Ave. & Tara Court	6.7	Α	13.0	В	
Montana Ave. & Existing Right-In/Out Approach.*	20.4	С	17.1	С	
Tara Court & North Approach*	9.3	Α	9.8	A	

^{*}Eastbound/Westbound or Northbound/Southbound LOS and Delay.

Table 2 shows the existing 2022 LOS for the AM and PM peak hours without the traffic from the Town Pump redevelopment but includes the existing Town Pump operation and the coffee kiosk. The LOS calculations are included in Appendix B. The analysis shows that most of the study intersections are currently operating at or above their ideal capacity (LOS C). However, the intersection of Montana Avenue and Custer has known peak-hour LOS issues which have existed at this location for more than ten years. The *Greater Helena Area Long Range Transportation Plan 2014 Update* recommends widening large sections of Custer Avenue to correct the overall LOS issues at this location. The section of Tara Court near the proposed development site has relatively low usage and operates with little overall intersection delay. However, the field studies did indicate the intersection of Tara Court with Montana Avenue does experience additional delay due to traffic backing through the intersection from the Custer Avenue traffic signal during peak hours. The general congestion in this area will likely continue until the necessary improvements along Custer Avenue area implemented. Based on the historic traffic data for this area, the overall operational conditions for this area have not changed significantly in the past ten years.

Area Crash Data

ATS collected crash data from MDT's public crash site to assess intersections for geometric and roadway characteristic deficiencies. The 5-year MDT data includes 48 crashes at the intersection of Montana Avenue and Tara Court and two crashes at the right in/out approaches from Montana Avenue. Generally, crashes are expressed as a rate of crashes per million vehicles entering (MVE). The crash rate at Tara Court and Montana Avenue is 1.3 crashes per MVE, which is high compared to standard crash rates for urban roadways. The crash trends at this intersection are like being affected by the congestion from the Custer Avenue traffic signal to the north. The crash rate at the right in/out approaches onto Montana Avenue is 0.1 per MVE which is relatively low and does not suggest any traffic mitigation measures are necessary currently.

D. PROPOSED REDEVELOPMENT

The redevelopment of the Town Pump property would include the construction of a new convenience story and casino with 16 gas pumps on the property directly north of the existing Town pump building. The old Town Pump building and gas pumps will be closed and possibly redeveloped in the future. The existing Coffee Kiosk would also be removed. The two existing approaches to the site along Montana Avenue would be combined into one shared approach. The three approaches to the site along Tara Court would be modified to include only two approaches and the nearest existing approach would be closed. The project would likely be completed in 2023. The Helena Town Pump #4 site plan is shown in **Figure 2**.

E. TRIP GENERATION AND ASSIGNMENT

ATS performed a trip generation analysis to determine the anticipated future traffic volumes from the proposed developments using the trip generation rates contained in *Trip Generation* (Institute of Transportation Engineers, Tenth Edition). These rates are the national standard and are based on the most current information available to planners. A vehicle "trip" is defined as any trip that either begins or ends at the development site. ATS determined that the critical traffic impacts on the intersections and roadways would occur during the weekday morning and evening peak hours. According to the ITE trip generation rates, at full build-out the development would produce 200 AM peak hour trips, 224 PM peak hour trips, and 3,286 daily trips. See **Table 3** for detailed trip generation information.

Table 3 - Trip Generation Rates

Land Use	Units	AM Peak Hour Trip Ends per Unit	Total AM Peak Hour Trip Ends	PM Peak Hour Trip Ends per Unit	Total PM Peak Hour Trip Ends	Weekday Trip Ends per Unit	Total Weekday Trip Ends
			200		224		
Gas Station	16		(102 in/		(114 in/		
ITE# 945	Pumps	12.47	98 out)	13.99	110 out)	205.36	3,286

Figure 2 – Helena Town Pump #4 Site Plan

Trip Types

As proposed, the development will produce some new traffic. However, not all of this traffic will be additive to the current road volumes in this area. There are three basic trip types that describe the traffic generated by new developments. These trip types include the following:

New Trips- This is the basic trip type created by all traffic generators. These trips are defined as those that occur only to utilize one traffic generator at a proposed development site.

Internal (Shared) Trips- These trips are created by associated facilities within or directly adjacent to the development. The trips are combined into one joint trip to the development and do not represent additional trips on the surrounding road network. Modern mixed-use developments, which are designed to be pedestrian and bicycle friendly, can produce high levels of internally captured trips. Internal trips are not applicable for the purposes of this report.

Pass-By Trips are those characterized by a vehicle which enters the development on their way to another destination. Upon leaving the driver continues along the roadway to their destination. Pass-By trips are not generally considered new trips on the surrounding road network because they would exist whether or not the development has been constructed. A common example of this type of trip is a driver which stops at a grocery store on their way home from work. Pass-by trips can be discounted from the through traffic on the adjacent roadways but must be included making the appropriate turning maneuvers at intersections. Generally, gas stations can be assumed to have a pass-by rate of at least 50 to 70%. For the purposes of this a 60% pass-by rate was used in the impact calculations.

F. TRIP DISTRIBUTION

The traffic distribution and assignment for the proposed subdivision was based upon the existing ADT volumes along the adjacent roadways and the peak-hour turning volumes. Traffic from the proposed project is estimated to distribute as shown in **Figure 2.**

G. TRAFFIC IMPACTS OUTSIDE OF THE DEVELOPMENT

Using the trip generation and trip distribution numbers, ATS determined the future Level of Service for the area intersections. The anticipated intersection LOS with the Town Pump #4 is shown in **Table 4**. The LOS calculations are included in **Appendix A** of this report.

Table 4 –Future Level of Service Summary

	AM Pea	k Hour	PM Peak Hour			
Intersection	Delay (Sec.)	LOS	Delay (Sec.)	LOS		
Custer Ave. & Montana Ave.	32.2	С	39.1	D		
Montana Ave. & Tara Court	10.8	В	17.2	В		
Montana Ave. & Existing Right-In/Out Approach.*	22.4	С	18.6	С		
Tara Court & North Approach*	9.9	А	10.5	В		

^{*}Eastbound/Westbound or Northbound/Southbound LOS and Delay.

Figure 2 – Trip Distribution

Table 4 indicates that the new Town Pump and Casino on Tara Court will not have any major impacts on traffic operations at the study intersections. Overall, the project would increase traffic volumes along Montana Avenue by 2-4% and the LOS at the study intersections will increase slightly over existing conditions. However, this analysis does not consider the drop in intersection traffic volumes which will occur due the closure of the existing 16-pump Town Pump and the coffee kiosk on the property. Together the elimination of these two land uses should offset the anticipated new traffic from the new Town Pump #4. The project will also include the added

benefit of reducing the total number of driveway approaches onto Montana Avenue by combining two existing approaches into one shared approach. Additionally, the project would improve traffic flow along Tara Court by eliminating the existing approach nearest to Montana Avenue which does not meet current approach spacing standards. No recommended improvements are needed with this project.

H. IMPACT SUMMARY & RECOMMENDATIONS

The existing known traffic congestion issues at the intersection of Custer Avenue and Montana Avenue to the north are creating some queueing and safety issues at the intersections to the south, but these conditions will not be heavily impacted by the proposed project. The project will also improve traffic roadway safety by eliminating two existing approaches into the study property. Based on the existing and estimated new traffic form the new gas station casino, no additional road improvements are currently recommended at the development site at this time.

APPENDIX A

Traffic Data

Turning Movement Count

All Vehicles

Location Helena Montana Ave. and Tara Ct.

Date June 9 and June 8 2022

Date	June 9 a																	
			Northb				Southb				astbo				Westbo			
					Peds			_	Peds		hr		Peds			_		TOTAL
7:00 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 -		5	44	3	0	5	123	2	0	9	0	13	0		0	4	0	209
7:30 -		3	74	5	0	5	189	5	0	12	0	5	0	0	2	3	0	303
7:45 -		6	96	4	0	3	231	13	0	12	1	8	0	6	2	2	0	384
8:00 -		22	102	4	0	4	168	6	0	12	2	9	0	7	2	2	0	340
8:15 -		9	102	6	0	6	165	4	0	9	3	4	0	5	0	5	0	318
8:30 -		10	85	11	0	11	147	8	0	15	2		0	5	2	8	0	317
8:45 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:15 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:30 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30 - 10:45 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45 -		0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 -		0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
11:30 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:15 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:30 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0
1:45 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 -	2:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 -	2:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 -	2:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 -	3:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 -	3:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 -	3:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 -	3:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 -		0	0	0	0		0	0	0		0	0	0		0	0	0	0
4:15 -		14	191	23	0		154	7	0	28	10	7	0		10	22	0	500
4:30 -		18	180	18	0		161	8	0	18	3	10	0		3	21	0	474
4:45 -		20	177	20	0		158	2	0	14	0	9	0		6	24	0	462
5:00 -		16	224	18	0		164	10	0	28	0	4	0		1	23	0	522
5:15 -		18	200	25		11	188	6	0	28	6	8	0	20	3	21	0	534
5:30 -		15	197	13	0	14	149	2	0	11	3	8	0	12	5	15	0	444
5:45 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:00 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:15 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:30 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 -	7:00	0 156	0 1672	0 150	0	0 125	0 1997	73	0	0 196	30	0 98	0	0 124	0 36	0 150	0	0 4807
		100	10/2	100	U	123	1991	13	U	190	30	90	U	124	30	100	U	4007

	6/6/2022	to	6/12/2022			~ .	- 4			
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Week	Weekend	Week Day 85%
Hour	6/6/2022	6/7/2022	6/8/2022	6/9/2022	6/10/2022	6/11/2022	6/12/2022	Day Avg	Avg	Avg Speed
0 - 1	*	*	*	6	*	**	*	6	0	27
1 - 2	*	*	*	6	*	*	*	6	0	28
2 - 3	*	*	*	1	*	*	*	1	0	17
3 - 4	*	*	*	3	*	*	*	3	0	24
4 - 5	*	*	*	2	*	*	*	2	0	32
5 - 6	*	*	*	8	*	*	*	8	0	24
6 - 7	*	*	*	35	*	*	*	35	0	25
7 - 8	*	*	*	84	*	*	*	84	0	23.5
8 - 9	*	*	*	145	*	*	*	145	0	23.5
9 - 10	*	*	*	137	*	*	*	137	0	24.7
10 - 11	*	*	51	146	*	*	*	98.5	0	24.3
11 - 12	*	*	160	170	*	*	*	165	0	23.7
12 - 13	*	*	146	78	*	*	*	112	0	23.85
13 - 14	*	*	139	*	*	*	*	139	0	23.5
14 - 15	*	*	151	*	*	*	*	151	0	24.3
15 - 16	*	*	141	*	*	*	*	141	0	24
16 - 17	*	*	160	*	*	*	*	160	0	25.6
17 - 18	*	*	138	*	*	*	*	138	0	25
18 - 19	*	*	122	*	*	*	*	122	0	26.5
19 - 20	*	*	79	*	*	*	*	79	0	27
20 - 21	*	*	54	*	*	*	*	54	0	26.5
21 - 22	*	*	48	*	*	*	*	48	0	25.5
22 - 23	*	*	22	*	*	*	*	22	0	26
23 - 24	*	*	13	*	*	*	*	13	0	23
Totals	0	0	1424	821	0	0	0			
% of Total	0%	0%	63.43%	36.57%	0%	0%	0%			
			2011011			• · -	* · -			Page 1

Page 1

APPENDIX B

Traffic Model

APPENDIX C

LOS Calculations

		HCS7	Sig	nalize	d Int	ersec	tion F	Resu	lts Sur	nmar	y								
General Inform	ation							T	Intersec	tion Inf	ormatic	n n			يا دار				
Agency	iation	ATS							Duration		0.250		┨	417					
Analyst		RLA		Analys	sic Date	Jul 6,	2022		Area Typ		Other		_# _\$		r. A				
Jurisdiction		MDT		Time F		-	eak Hou	ır	PHF		1.00		→	→					
Urban Street		Montana Avenue			sis Year		eak i loc	11	Analysis	Poriod	1> 7:0	20		SBL SB 5 2 1.1 4.0 10.2 77.0 0.3 0.0 1.00 0.00 SB L T 5 2 152 284 2					
Intersection		Custer Avenue		File Na			naSign	alc A M		renou	17.1.0	JU			<u></u>				
	tion	Town Pump		File IV	anie	IVIOTILA	masign	aisAiv	.xus				- 4		tr d'				
Project Descrip	lion	TOWN Pullip																	
Demand Inform	nation				EB			W	В		NB			SB					
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	T	R				
Demand (v), v	eh/h			80	368	144	180	36	4 144	100	196	80	152	512	48				
Signal Informa		T T		4	7		1			$\exists z$	\exists		L	д	~				
Cycle, s	130.0	Reference Phase	2		5		51	7	2	ž R		1 -	2	3	4				
Offset, s	0	Reference Point	End	Green	6.4	0.9	72.4	6.3	0.1	26.9		•							
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	0.0	3.0	3.0		3.0	\	>	V		4				
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.0	0.0	0.0	1.0		5	6	7	8				
Timor Populto	Timer Results Assigned Phase Case Number Phase Duration, s					EBT	WB		WBT	NBI		NBT	CDI		CDT				
				EBI	-	8	7		4	1	-	6		-					
_	# 			1.1	-		2.0	-	3.0	1.1		3.0	_	_					
				_	_	3.0		_	34.1			76.4							
	·	\ -		9.3	_		12.4		34.1 9.4 4.0 3.0										
Change Period,		,		3.0	-	4.0		3.0			-	4.0							
	Max Allow Headway (<i>MAH</i>), s Queue Clearance Time (<i>g</i> _s), s				_	3.1	3.1	_	3.1	3.1		0.0			0.0				
, <u> </u>				6.6	_	14.6	9.0	_	27.8	6.2	-	0.0			0.0				
Green Extension Time (g e), s				0.0	_	2.2	0.4		2.2	0.2		0.0	-		0.0				
	Phase Call Probability				_	1.00	1.00	_	1.00	0.99									
Max Out Proba	DIIILY			1.00	,	0.00	0.00	,	0.00	0.00			0.00	,					
Movement Gro	up Res	sults			EB			WB			NB			SB					
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R				
Assigned Move				3	8	18	7	4	14	1	6	16	5	2	12				
Adjusted Flow F	Rate (v), veh/h		80	368	144	180	364	144	127	249	102	152	284	276				
_		ow Rate (s), veh/h/ln		1755	1687	1502	1639	1772	2 1502	1688	1687	1502	1688	1772	1718				
Queue Service		· , , .		4.6	12.6	10.9	7.0	25.8	10.6	4.2	5.3	3.7	5.0	10.8	10.9				
Cycle Queue C	learance	e Time (<i>g c</i>), s		4.6	12.6	10.9	7.0	25.8		4.2	5.3	3.7	5.0	10.8	10.9				
Green Ratio (g	/C)	()		0.26	0.21	0.21	0.07	0.23	0.23	0.61	0.56	0.63	0.61	0.56	0.56				
Capacity (c), v	eh/h			158	699	311	237	410	347	533	1880	945	732	999	969				
Volume-to-Capa	acity Ra	itio (X)		0.506	0.526	0.463	0.760	0.88	8 0.415	0.239	0.133	0.108	0.208	0.284	0.285				
		/In (95 th percentile)		92.8	230.2	_		436.		69.9	96.3	57.5	83.1	201.2	194.7				
	· ,	eh/ln (95 th percentile	e)	3.7	9.1	7.4	5.3	17.2		2.8	3.8	2.3	3.3	7.9	7.8				
	• , ,	RQ) (95 th percentil	_	0.29	0.46	0.59	0.30	0.87		0.22	0.19	0.19	0.26	0.40	0.40				
Uniform Delay (, , , , ,		40.3	45.8	45.2	59.2	48.3	42.5	11.5	16.4	10.2	10.8	14.7	14.7				
Incremental De				0.9	0.2	0.4	1.9	2.7	0.3	0.1	0.1	0.2	0.1	0.7	0.7				
Initial Queue De	elay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Control Delay (·		41.2	46.1	45.6	61.1	51.0	42.8	11.6	16.5	10.4	10.9	15.4	15.5				
Level of Service	e (LOS)			D	D	D	Е	D	D	В	В	В	В	В	В				
Approach Delay	y, s/veh	/ LOS		45.3	3	D	51.9	9	D	13.9		В	14.5	5	В				
Intersection De	lay, s/ve	eh / LOS				32	2.2						С						
											N.D.								
Multimodal Re		// 00			EB			WB			NB			SB					
				2.46 0.98	_	В	2.30	_	В	2.41	_	В	2.26	_	В				
Ricycle LOS Sc	edestrian LOS Score / LOS icycle LOS Score / LOS				5	Α	1.62	2	В	0.80		Α	1.08	3	Α				

Intersection Information Duration, h 0.250
Agency
Analyst
Signal Information
Urban Street
Intersection
Project Description Town Pump Town
Demand Information EB WB NB SB Approach Movement L T R L C Geen M A 1 0 0 0 0 0 0 0 0
Approach Movement
Demand (v), veh/h
Signal Information Cycle, s 130.0 Reference Point End Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 1.0 0.0 1.0 Timer Results EBL EBL EBL WBT NBL NBT SBL SBT Assigned Phase 3 8 7 4 1 6 5 2 Case Number 1.1 3.0 2.0 3.0 1.1 3.0 1.1 4.0 Phase Duration, s 12.0 44.0 14.9 46.9 14.5 53.7 17.4 56.6 Change Period, (Y+Rc), s 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0
Cycle, s 130.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cycle, s 130.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Offset, s 0 Reference Point Uncoordinated End Uncoordinated Green 11.5 2.8 49.7 9.0 2.9 40.0 3.0 3.0 7.0 8.0 7.0 8.0 3.0
Uncoordinated Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 3.0
Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 3.0 3.0 0.0 0.0
Timer Results EBL EBT WBL WBT NBL NBT SBL SBT Assigned Phase 3 8 7 4 1 6 5 2 Case Number 1.1 3.0 2.0 3.0 1.1 3.0 1.1 4.0 Phase Duration, s 12.0 44.0 14.9 46.9 14.5 53.7 17.4 56.6 Change Period, (Y+R c), s 3.0 4.0 3.0 <td< td=""></td<>
Assigned Phase 3 8 7 4 1 6 5 2 Case Number 1.1 3.0 2.0 3.0 1.1 3.0 1.1 4.0 Phase Duration, s 12.0 44.0 14.9 46.9 14.5 53.7 17.4 56.6 Change Period, (Y+Rc), s 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 Max Allow Headway (MAH), s 3.1 3.1 3.1 3.1 3.1 0.0 3.1 0.0 Queue Clearance Time (gs), s 11.0 19.6 11.3 39.4 11.2 13.9 Green Extension Time (ge), s 0.0 3.6 0.5 3.5 0.4 0.0 0.5 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Max Out Probability 1.00 0.00 0.00 0.01 0.00 0.00 Movement Group Results EB WB NB SB Approach Movement 1 L T R L T R L T R L T R L T R Assigned Movement 3 8 18 7 4 14 1 6 16 5 2 12 Adjusted Flow Rate (v), veh/h 184 552 104 240 532 300 200 728 155 264 245 23 Adjusted Saturation Flow Rate (s), veh/h/ln 1755 1687 1502 1639 1772 1502 1688 1687 1502 1688 1772 167 Queue Service Time (gs), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Green Ratio (g/C) 0.38 0.31 0.31 0.09 0.33 0.33 0.47 0.38 0.47 0.51 0.40 0.4 Capacity (c), veh/h 201 1038 462 299 584 495 472 1291 712 390 717 67
Assigned Phase 3 8 7 4 1 6 5 2 Case Number 1.1 3.0 2.0 3.0 1.1 3.0 1.1 4.0 Phase Duration, s 12.0 44.0 14.9 46.9 14.5 53.7 17.4 56.6 Change Period, (Y+Rc), s 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 Max Allow Headway (MAH), s 3.1 3.1 3.1 3.1 3.1 0.0 3.1 0.0 Queue Clearance Time (gs), s 11.0 19.6 11.3 39.4 11.2 13.9 Green Extension Time (ge), s 0.0 3.6 0.5 3.5 0.4 0.0 0.5 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Max Out Probability 1.00 0.00 0.00 0.01 0.00 0.00 Movement Group Results EB WB NB SB Approach Movement 1 L T R L T R L T R L T R L T R Assigned Movement 3 8 18 7 4 14 1 6 16 5 2 12 Adjusted Flow Rate (v), veh/h 184 552 104 240 532 300 200 728 155 264 245 23 Adjusted Saturation Flow Rate (s), veh/h/ln 1755 1687 1502 1639 1772 1502 1688 1687 1502 1688 1772 167 Queue Service Time (gs), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Green Ratio (g/C) 0.38 0.31 0.31 0.09 0.33 0.33 0.47 0.38 0.47 0.51 0.40 0.4 Capacity (c), veh/h 201 1038 462 299 584 495 472 1291 712 390 717 67
Case Number 1.1 3.0 2.0 3.0 1.1 3.0 1.1 4.0 Phase Duration, s 12.0 44.0 14.9 46.9 14.5 53.7 17.4 56.6 Change Period, (Y+R c), s 3.0 4.0 3.0 <t< td=""></t<>
Phase Duration, s 12.0 44.0 14.9 46.9 14.5 53.7 17.4 56.6 Change Period, (Y+R c), s 3.0 4.0 3.0 3.1 3.0 3.0 4.0 3.0 4.0 3.0 3.0 4.0 3.0 4.0 3.0
Change Period, (Y+R c), s 3.0 4.0 3.0 3.1 0.0 3.1 0.0 3.1 0.0 3.1 0.0 3.1 0.0 3.1 0.0 3.1 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <
Max Allow Headway (MAH), s 3.1 3.1 3.1 3.1 3.1 3.1 0.0 3.1 0.0 Queue Clearance Time ($g \circ$), s 11.0 19.6 11.3 39.4 11.2 13.9 Green Extension Time ($g \circ$), s 0.0 3.6 0.5 3.5 0.4 0.0 0.5 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Queue Clearance Time (g_s), s 11.0 19.6 11.3 39.4 11.2 13.9 Green Extension Time (g_s), s 0.0 3.6 0.5 3.5 0.4 0.0 0.5 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Green Extension Time ($g e$), s 0.0 3.6 0.5 3.5 0.4 0.0 0.5 0.0 Phase Call Probability 1.00 </td
Phase Call Probability 1.00 1.
Max Out Probability 1.00 0.00 0.00 0.01 0.00 0.00 0.00 Movement Group Results EB WB WB NB SB Approach Movement L T R L L R L L R L L </td
Movement Group Results EB WB NB SB Approach Movement L T R L L T R L
Approach Movement L T R
Approach Movement L T R
Assigned Movement 3 8 18 7 4 14 1 6 16 5 2 12 Adjusted Flow Rate (v), veh/h 184 552 104 240 532 300 200 728 155 264 245 23 Adjusted Saturation Flow Rate (s), veh/h/ln 1755 1687 1502 1639 1772 1502 1688 1687 1502 1688 1772 167 Queue Service Time (gs), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Cycle Queue Clearance Time (gc), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Green Ratio (g/C) 0.38 0.31 0.31 0.09 0.33 0.33 0.47 0.38 0.47 0.51 0.40 0.4 Capacity (c), veh/h 201 1038 462 299 584 495 472 1291 712 390 717 67
Adjusted Flow Rate (v), veh/h 184 552 104 240 532 300 200 728 155 264 245 233 Adjusted Saturation Flow Rate (s), veh/h/ln 1755 1687 1502 1639 1772 1502 1688 1687 1502 1688 1772 167 Queue Service Time (g s), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Cycle Queue Clearance Time (g c), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Green Ratio (g/C) 0.38 0.31 0.31 0.09 0.33 0.33 0.47 0.38 0.47 0.51 0.40 0.4 Capacity (c), veh/h 201 1038 462 299 584 495 472 1291 712 390 717 67
Adjusted Saturation Flow Rate (s), veh/h/ln 1755 1687 1502 1639 1772 1502 1688 1687 1502 1688 1772 167 Queue Service Time (gs), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Cycle Queue Clearance Time (gc), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Green Ratio (g/C) 0.38 0.31 0.31 0.09 0.33 0.33 0.47 0.38 0.47 0.51 0.40 0.4 Capacity (c), veh/h 201 1038 462 299 584 495 472 1291 712 390 717 67
Queue Service Time (g_s), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Cycle Queue Clearance Time (g_c), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Green Ratio (g/C) 0.38 0.31 0.31 0.09 0.33 0.33 0.47 0.38 0.47 0.51 0.40 0.4 Capacity (c), veh/h 201 1038 462 299 584 495 472 1291 712 390 717 677
Cycle Queue Clearance Time (g c), s 9.0 17.6 6.7 9.3 37.4 21.8 9.2 23.3 8.0 11.9 12.4 12. Green Ratio (g/C) 0.38 0.31 0.31 0.09 0.33 0.33 0.47 0.38 0.47 0.51 0.40 0.4 Capacity (c), veh/h 201 1038 462 299 584 495 472 1291 712 390 717 67
Green Ratio (g/C) 0.38 0.31 0.31 0.09 0.33 0.33 0.47 0.38 0.47 0.51 0.40 0.4 Capacity (c), veh/h 201 1038 462 299 584 495 472 1291 712 390 717 673
Capacity (c), veh/h 201 1038 462 299 584 495 472 1291 712 390 717 677
** voiding-to-capaonty mano (7) U.C.D # U.C.
Back of Queue (Q), ft/ln (95 th percentile) 260.7 296.1 112.3 179.5 613.4 319.8 167.8 383.5 138.5 208.5 237.2 226
Back of Queue (Q), veh/ln (95 th percentile) 10.3 11.7 4.4 7.1 24.1 12.6 6.6 15.1 5.5 8.2 9.3 9.1
Queue Storage Ratio (RQ) (95 th percentile) 0.81 0.59 0.35 0.40 1.23 0.64 0.52 0.77 0.46 0.65 0.47 0.4
Uniform Delay (d 1), s/veh 35.4 37.2 33.5 57.9 41.7 36.5 21.5 35.2 20.6 22.5 26.8 26.
Incremental Delay (<i>d 2</i>), s/veh 39.6 0.2 0.1 1.9 7.9 0.4 0.2 1.7 0.7 0.8 1.3 1.4
Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Control Delay (d), s/veh 75.0 37.4 33.6 59.8 49.6 36.9 21.7 36.9 21.2 23.3 28.1 28.
Level of Service (LOS) E D C E D D C C C C C
Approach Delay, s/veh / LOS 45.2 D 48.3 D 31.9 C 26.4 C
Intersection Delay, s/veh / LOS 38.5 D
The cost of body, 6/voil / Eoo
Multimodal Results EB WB NB SB
Pedestrian LOS Score / LOS 2.45 B 2.29 B 2.44 B 2.28 B
Bicycle LOS Score / LOS 1.18 A 2.26 B 1.20 A 1.10 A

	General Information Agency ATS			nalize	d In	terse	cti	ion R	esul	ts Sur	nmar	у				
Gonoral Inform	ation								Y .	ntersec	tion Inf	ormatic	n n		I 역 Y 약 ↓	Ja l <u>u</u>
	alion	ATC							_	Duration,		0.250		- 1	411	
				Analye	sia Dat	e Jul 6		000						_# #		K.
				Time F		_		ak Hou	_	Area Typ PHF	Е	Other 0.92			wî.	~
								ак пои	$\overline{}$		Dariad	1> 7:0	20	- 4		* ₽ ←
				Analys				- C:		Analysis	Period	1> 7:0	JU			<u></u>
	ion	_		File Na	ame	IVIOI	ııan	naSigna	aisaivi.	xus					1 1 1	te ce
Project Descript	ion	Town Pump								_						P. III
Demand Inform	nation				EB				WE	3		NB			SB	
Approach Move	ment			L	Т	R		L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			48	4	32	2	24	8	8	24	384	16	12	924	52
				10												
Signal Information	tion	v-				1 2	\geq	1								A
Cycle, s	130.0	Reference Phase	2		51	z₩.	Ĕ.	1					1 1	2	3	2
Offset, s	0		End	Green				0.0	0.0	0.0	0.0			_		-
Uncoordinated	No	·	On	Yellow Red		3.0		0.0	0.0	0.0	0.0			V		Z
Force Mode	ncoordinated No Simult. Gap E/W Orce Mode Fixed Simult. Gap N/S Office Mode Fixed Simult. Gap E/W Office Mode Fixed Simult. Gap E/W Office Mode Fixed Simult. Gap E/W Office Mode Fixed Simult. Gap N/S Office Fixed Simult. Gap N/S O				0.0	1.0		0.0	0.0	0.0	0.0		5	6	7	8
	Interval Information Incy ATS Ilyst RLA Isdiction MDT Is an Street Montana Avenue Is rection Tara Court Incet Description Town Pump Interval Information Incommation Incommati							14/51	_	14/5=						0.0.7
	neral Information ency ATS alyst RLA risdiction MDT can Street Montana Avenue ersection Tara Court roject Description proach Movement mand Information proach Movement mand (v), veh/h gnal Information cle, s 130.0 Reference Phase set, s 0 Reference Point coordinated No Simult. Gap E/W roce Mode Fixed Simult. Gap N/S mer Results signed Phase se Number ase Duration, s ange Period, (Y+R c), s ax Allow Headway (MAH), s eue Clearance Time (g s), s even Extension Time (g e), s ase Call Probability ax Out Probability by evement Group Results proach Movement signed Movement flusted Flow Rate (v), veh/h gusted Saturation Flow Rate (s), veh/h/In eue Service Time (g s), s een Ratio (g/C) pacity (c), veh/h fume-to-Capacity Ratio (X) ck of Queue (Q), ft/ln (95 th percentile) eue Storage Ratio (RQ) (95 th percentile) eue Storage Ratio (RQ) (95 th percentile) form Delay (d 1), s/veh remental Delay (d 2), s/veh					EBT	+	WBI	-	WBT	NBI	-	NBT	SBI		SBT
	imer Results ssigned Phase ase Number hase Duration, s hange Period, (Y+R c), s lax Allow Headway (MAH), s ueue Clearance Time (g s), s reen Extension Time (g e), s hase Call Probability lax Out Probability					8	+			4		_	6	_	_	2
	ffset, s 0 Reference Point Reference Point Results Simult. Gap N/S Simult. Gap					8.0	4		_	7.0			6.0	_		6.0
	tueue Clearance Time (g_s), s freen Extension Time (g_e), s hase Call Probability lax Out Probability					13.8	1		_	13.8			116.2	_		116.2
	Лах Allow Headway (<i>MAH</i>), s				_	4.0	4			4.0			3.0	_		3.0
	<u> </u>				_	3.2	4		_	3.2		_	0.0		-	0.0
Queue Clearance Time (g s), s Green Extension Time (g s) s						9.7	4			4.9				_		
Green Extension Time (g e), s					_	0.2	1			0.2			0.0			0.0
Phase Call Probability					_	0.99	4			0.99						
Max Out Probab	oility					0.00	_			0.00						
Movement Gro	un Pas	eulte			EB		Ŧ		WB			NB			SB	
		ouits			T	R	+	L	T	R	L	T	R	L	T	R
				3	8	18	+	7	4	14	1	6	16	5	2	12
_		\ voh/h		-	91	10	+		35	9	26	218	216	10	417	409
		·	n		1514		+		1425	_	674	1800	1774	969	1800	1766
		· ,	11		4.8		٠		0.0	0.7	0.8	2.3	2.3	0.2	2.8	2.9
					7.7	+	+		2.9	0.7	3.7	2.3	2.3	2.5	2.8	2.9
		c inite (g c), s			0.08		+		0.08	0.08	0.87	0.87	0.87	0.87	0.87	0.87
,,,					157		+		156	115	627	1568	1545	882	1568	1538
		tio (X)			0.580	_	+		0.223	_	0.042	0.139	0.140	0.012	0.266	0.266
					134.9	_	+		49.1	12.1	3.8	20.8	20.7	1	25.1	25.8
	· , ·	· · · · · · · · · · · · · · · · · · ·			5.4		+		2.0	0.5	0.2	0.8	0.8	0.0	1.0	1.0
	` '				0.00		+		0.00	0.00	0.2	0.00	0.00	0.00	0.00	0.00
		, , , , , , , , , , , , , , , , , , , ,)		59.1		+		56.9	55.9	1.5	1.2	1.2	1.1	0.00	0.00
					1.3		+		0.3	0.1	0.1	0.2	0.2	0.0	0.7	0.7
		<i></i>			0.0		+		0.0	0.1	0.1	0.2	0.2	0.0	0.4	0.4
	Initial Queue Delay (d 3), s/veh				60.3		+		57.1	56.0	1.7	1.4	1.4	1.1	1.1	1.1
					60.3 E		+		57.1 E	56.0 E	1.7 A	1.4 A	1.4 A	A	1.1 A	1.1 A
				60.3		E	+	56.9						1.1		A
				00.3	,	E	6.7			E 1.4 A						А
microection Del	ay, s/ve	ai / LOS					0.7					A				
Multimodal Res	sults				EB				WB			NB			SB	
		/ LOS		2.32		В	1	2.32		В	1.80		В	1.58		В
				0.64		A	1	0.56	_	A	0.87	-	A	1.37		A
•																

	General Information Agency ATS			nalize	d In	tersec	tion F	Resu	lts Sur	nmar	у				
Gonoral Inform	ation								Intersec	tion Inf	ormatic	n n	T .	ا با علمال إما	Ja l <u>u</u>
	ation	ATC							Duration,		0.250		- 1	411	
				Analys	io Dot	e Jul 6,	2022						_# #		K.
Analyst				Time F			2022 eak Hoι	_	Area Typ PHF	Е	Other 0.92			wî.	~
							еак пос	_		Dariad		20	_ <u>₹</u>		* ₽
				Analys					Analysis	Period	1> 7:0	JU			<u></u>
	ion	_		File Na	ame	IMONIA	anaSign	aisPivi	.xus				- 4	1 1 1	te ce
Project Descript	lion	Town Pump				_			_						P. III
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			112	24	32	80	12	84	72	800	100	44	752	24
Signal Informa	tion	V				2 6	∃								A
Cycle, s	130.0	Reference Phase	2		<u>5</u> 1	7 H							2	2	2
Offset, s	0		End	Green			0.0	0.0	0.0	0.0					-
Uncoordinated	No	·	On	Yellow		3.0	0.0	0.0	0.0	0.0			V		Z
Force Mode	ffset, s 0 Reference Point Encoordinated No Simult. Gap E/W Corce Mode Fixed Simult. Gap N/S Corce				0.0	1.0	0.0	0.0	0.0	0.0		5	6	7	8
	peral Information Incy Incy Incy Incy Incy Incy Incy In				_		\ \\	.	MET	ND		NDT	0.00		ODT
				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI		SBT
	imer Results ssigned Phase ase Number hase Duration, s hange Period, (Y+R c), s lax Allow Headway (MAH), s lueue Clearance Time (g s), s ireen Extension Time (g e), s hase Call Probability					8	<u> </u>	_	4			6	_	_	2
	orce Mode Fixed Simult. Gap E/W orce Mode Fixed Simult. Gap E/W orce Mode Fixed Simult. Gap N/S orce Number State Duration, so thange Period, (Y+Rc), so thange Period, (Y					8.0		_	7.0			6.0			6.0
	imer Results ssigned Phase case Number chase Duration, s change Period, (Y+R c), s dax Allow Headway (MAH), s dueue Clearance Time (g s), s creen Extension Time (g e), s chase Call Probability dax Out Probability lovement Group Results spproach Movement ssigned Movement					21.9		_	21.9		1	108.1			108.1
	Лах Allow Headway (<i>MAH</i>), s				_	4.0		_	4.0			3.0			3.0
	· · · /				_	3.2		_	3.2		_	0.0			0.0
Queue Clearance Time (g s), s Green Extension Time (g e), s						17.4			11.5						
Green Extension Time (g e), s					_	0.5		_	0.6			0.0			0.0
Phase Call Probability					_	1.00		_	1.00						
Max Out Probab	oility					0.02			0.00						
Movement Gro	un Pos	eulte.			EB			WB			NB			SB	
		ouits			Т	T R	L	T	R	L	T	R	L	T	R
				3	8	18	7	4	14	1	6	16	5	2	12
		\ veh/h		3	183	10	-	100	91	78	499	479	40	356	352
-		,	n		1510			1295	_	752	1800	1729	584	1800	1780
		· ,	11		5.9		-	0.0	7.1	3.8	9.5	9.5	2.0	8.2	8.2
		· · ·			15.4			9.5	7.1	12.1	9.5	9.5	11.7	8.2	8.2
		c inite (g c), s			0.14			0.14	_	0.81	0.81	0.81	0.81	0.81	0.2
,,					254			230	210	616	1455	1398	485	1455	1439
		tio (X)			0.719			0.435		0.127	0.343	0.343	0.083	0.244	0.245
					249.6			138.1	_	27.2	130.2	125.6	11.3	121.8	118.7
	· ,.	· · · · · ·			10.0			5.5	5.0	1.1	5.2	5.0	0.5	4.9	4.7
	` '		,		0.00	_		0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
		, , , , , , , , , , , , , , , , , , , ,	()		54.9			52.4		4.7	3.3	3.3	3.9	4.4	4.3
					2.3			0.5	0.5	0.4	0.6	0.7	0.3	0.4	0.4
		<i></i>			0.0			0.0	0.0	0.4	0.0	0.7	0.0	0.4	0.4
		·			57.2			52.8	_	5.1	3.9	4.0	4.2	4.7	4.7
	Control Delay (d), s/veh				57.2 E			52.6 D	D D	3.1 A	3.9 A	4.0 A	4.2 A	4.7 A	4.7 A
				57.2		E	52.4		D	4.0		A	4.7		A
				37.2	-		3.0	7	U	4.0			<u>4.7</u> B		А
microection Del	ay, s/ve	ai / LOS				I v	J.U					В			
Multimodal Res	sults				EB			WB			NB			SB	
		/ LOS		2.31		В	2.3		В	1.83		В	1.6		В
				0.79		A	0.80	_	A	1.36	_	A	1.22		A

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Town Pump approach
Agency/Co.	ATS	Jurisdiction	Lewis&Clakr
Date Performed	7/6/2022	East/West Street	NA
Analysis Year	2022	North/South Street	Montana
Time Analyzed	AM existing	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Town Pump - Montana		

Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		0	0	0	0	0	1	0	0	0	1	0
Configuration		L		R						LT						TR
Volume (veh/h)		0		36						0	424				960	20
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized		N	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T	7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		0		39						0						
Capacity, c (veh/h)		131		273						650						
v/c Ratio		0.00		0.14						0.00						
95% Queue Length, Q ₉₅ (veh)		0.0		0.5						0.0						
Control Delay (s/veh)		32.5		20.4						10.5						
Level of Service (LOS)		D		С						В						
Approach Delay (s/veh)	20.4									0	.0					
Approach LOS		С														

	HCS7 Two-Way Stoր	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Town Pump approach
Agency/Co.	ATS	Jurisdiction	Lewis&Clakr
Date Performed	7/6/2022	East/West Street	NA
Analysis Year	2022	North/South Street	Montana
Time Analyzed	PM existing	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Town Pump - Montana		

					iviajoi	Jueet. Noi	tii-30utii									
Vehicle Volumes and Adjustments Approach Eastbound Westbound Northbound Southbound																
Approach	Π	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		0	0	0	0	0	1	0	0	0	1	0
Configuration		L		R						LT						TR
Volume (veh/h)		0		24						0	972				848	16
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized		Ν	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	dways														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	П	0		26						0						
Capacity, c (veh/h)		67		322						726						
v/c Ratio		0.00		0.08						0.00						
95% Queue Length, Q ₉₅ (veh)		0.0		0.3						0.0						
Control Delay (s/veh)		59.0		17.1						10.0						
Level of Service (LOS)		F		С						А						
Approach Delay (s/veh)	17.1								0	.0						
Approach LOS		(С													

	HCS7 Two-Way Stoր	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Tara Court approach
Agency/Co.	ATS	Jurisdiction	Lewis&Clakr
Date Performed	7/6/2022	East/West Street	Tara Court
Analysis Year	2022	North/South Street	NA
Time Analyzed	AM existing	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Town Pump - Montana		

Vehicle Volumes and Ad	justille	1115														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			44	28		20	64			28		40				
Percent Heavy Vehicles (%)						3				3		3				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.43		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т					22					74					
Capacity, c (veh/h)						1514					906					
v/c Ratio						0.01					0.08					
95% Queue Length, Q ₉₅ (veh)	Ì					0.0					0.3					
Control Delay (s/veh)						7.4					9.3					
Level of Service (LOS)						А					А					
Approach Delay (s/veh)						1	.8	•		9.3						
Approach LOS										,	Ą					

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Tara Court approach
Agency/Co.	ATS	Jurisdiction	Lewis&Clakr
Date Performed	7/6/2022	East/West Street	Tara Court
Analysis Year	2022	North/South Street	NA
Time Analyzed	PM existing	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Town Pump - Montana		

Approach	T	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			140	8		16	92			16		28				
Percent Heavy Vehicles (%)						3				3		3				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.43		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Т					17					48					\Box
Capacity, c (veh/h)						1412					802					
v/c Ratio						0.01					0.06					\Box
95% Queue Length, Q ₉₅ (veh)						0.0					0.2					
Control Delay (s/veh)						7.6					9.8					
Level of Service (LOS)	Ì					А					А					
Approach Delay (s/veh)						1	.2			9	.8					
Approach LOS	T T				Ì						4					

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Sur	nmar	у				
	41								1 1		1.			ا با جاء الجاء ا	L I
General Inforn	nation	ATO						\rightarrow	Intersec					411	- X
Agency		ATS		A == 1, r=	is Dat	- II.C	2022		Duration,		0.250		_1		r_ X
Analyst		RLA		+		Jul 6,		_	Area Typ	e	Other			w‡E	~
Jurisdiction		MDT		Time F	erioa	Projec	cted AM		PHF		1.00				
Urban Street		Montana Avenue		Analys	sis Yea	_			Analysis	Period	1> 7:0	00			
Intersection		Custer Avenue		File Na		_	anaSign		projected				_		te (*
Project Descrip	tion	Town Pump							,				1 -		
		· ·													
Demand Inform	mation				EB			W	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			80	368	149	185	36	4 144	110	208	90	152	526	48
Signal Informa	ation						ĮĮ.			<u></u>	<u></u>				K
Cycle, s	130.0	Reference Phase	2	1	E	243	- 1	, -	6	\f			<u> </u>	→	-
Offset, s	0	Reference Point	End	C	70		70.4		7 00	7 3		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		0.3	72.4 3.0	6.3		26.8 3.0	<u> </u>	.	KŤ2		7
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.0	0.0		1.0		5	6	7	→ 8
Timer Results				EBI	-	EBT	WB	L	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phas	е			3		8	7		4	1		6	5		2
Case Number				1.1		3.0	2.0		3.0	1.1		3.0	1.1		4.0
Phase Duration				9.3	_	30.8	12.6	_	34.1	10.0	-	76.4	10.2		76.7
Change Period		·		3.0		4.0	3.0		4.0	3.0		4.0	3.0		4.0
Max Allow Hea		·		3.1 6.6		3.1	3.1	-	3.1	3.1		0.0	3.1	-	0.0
	Queue Clearance Time (g s), s					14.6	9.2		27.8	6.7			7.0		
	Green Extension Time (g e), s			0.0		2.2	0.4		2.2	0.3		0.0	0.3		0.0
Phase Call Pro				0.94	_	1.00	1.00	_	1.00	0.99	_		1.00	_	
Max Out Proba	bility			1.00)	0.00	0.00)	0.00	0.00)		0.00)	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			3	8	18	7	4	14	1	6	16	5	2	12
Adjusted Flow I	Rate (<i>v</i>), veh/h		80	368	149	185	364	144	144	273	118	152	291	283
		ow Rate (s), veh/h/l	n	1755	1687	1502	1639	1772	1502	1688	1687	1502	1688	1772	1719
Queue Service		5 ,.		4.6	12.6	11.4	7.2	25.8		4.7	6.7	4.7	5.0	11.2	11.3
Cycle Queue C		e Time (<i>g c</i>), s		4.6	12.6	11.4	7.2	25.8		4.7	6.7	4.7	5.0	11.2	11.3
Green Ratio (g				0.25	0.21	0.21	0.07	0.23		0.61	0.56	0.63	0.61	0.56	0.56
Capacity (c), v				158	694	309	242	410	347	529	1879	947	708	991	961
Volume-to-Cap				0.505	0.530		0.765	0.888		0.273	0.145	0.125	0.215	0.293	0.295
	• •	/In (95 th percentile)		93	230.6	_	139	436.4		79	124.2	75	83.1	208.4	201.6
	, ,	eh/ln (95 th percenti		3.7	9.1	7.7	5.5	17.2		3.1	4.9	3.0	3.3	8.2	8.1
		RQ) (95 th percent	ile)	0.29	0.46	0.61	0.31	0.87		0.25	0.25	0.25	0.26	0.42	0.41
Uniform Delay	, ,			40.4	46.0	45.5	59.1	48.3	_	11.5	19.3	11.3	10.9	15.1	15.1
Incremental De	- 1	•		0.9	0.2	0.4	1.9	2.7	0.3	0.1	0.2	0.3	0.1	0.8	0.8
	Initial Queue Delay (d 3), s/veh			0.0	0.0 46.2	0.0	0.0	0.0 51.0	0.0 42.8	0.0	0.0 19.5	0.0	0.0	0.0	0.0
	Control Delay (d), s/veh			41.3 D	46.2 D	45.9 D	61.0 E	51.0 D	42.8 D	B	19.5 B	11.6 B	B	15.9 B	15.9 B
	Level of Service (LOS) Approach Delay, s/veh / LOS			45.5		D	52.0		D	15.6		В	14.9		В
Intersection De				40.0	,		2.3	,	U	15.0	,		14.8 C	,	U
De	.ay, 5/ vC					3,									
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS		/LOS		2.46	-	В	2.30		В	2.4		В	2.26		В
Bicycle LOS So				0.98		Α	1.63	_	В	0.82		Α	1.09		Α
•															

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	Its Sur	nmar	у				
0 11 6	11								1 1					ا با جاء الجاء ا	L I
General Inform	nation	ATO						\rightarrow	Intersec					411	P 14
Agency		ATS		A b	is Data	1	2022		Duration		0.250		_1		R_
Analyst		RLA		1		Jul 6,		\rightarrow	Area Typ	e	Other			w‡E	\
Jurisdiction		MDT		Time F	erioa	Projec	cted AM		PHF		1.00				
Urban Street		Montana Avenue		Analys	sis Year			\neg	Analysis	Period	1> 7:0	00			Ē
Intersection		Custer Avenue		File Na		_	anaSign		projected				_		শ ব
Project Descrip	tion	Town Pump							. ,				1 -		
		'													
Demand Inforr	nation				EB			WI	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			184	552	109	245	53	2 300	172	598	136	264	419	76
Signal Informa	ition				T					<u></u>	<u>S</u>				K
Cycle, s	130.0	Reference Phase	2	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1243	- 1	<u>, ~ </u>	~	74			>	⋰ │	
Offset, s	0	Reference Point	End	Green	12.4	2.1	49.6	9.0	0.1	39.8) I	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	3.0	3.0		3.0	<u> </u>		KŤ2		7
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.0	0.0		1.0		5	6	7	→ 8
Timer Results				EBI		EBT	WB	L	WBT	NBI	_	NBT	SBI		SBT
Assigned Phase	e			3		8	7		4	1		6	5		2
Case Number				1.1		3.0	2.0	_	3.0	1.1		3.0	1.1		4.0
Phase Duration	ı, S			12.0)	43.8	15.1	1	46.9	15.4	-	53.6	17.5	5	55.7
Change Period	_ `			3.0		4.0	3.0		4.0	3.0		4.0	3.0		4.0
Max Allow Head				3.1		3.1	3.1	-	3.1	3.1	-	0.0	3.1		0.0
	Queue Clearance Time (g s), s			11.0		19.6	11.5		39.4	12.0	_		14.0		
	Green Extension Time (g e), s			0.0	_	3.6	0.5	_	3.5	0.4		0.0	0.5		0.0
Phase Call Pro				1.00		1.00	1.00	_	1.00	1.00	_		1.00	_	
Max Out Proba	bility			1.00)	0.00	0.00)	0.01	0.00)		0.00)	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			3	8	18	7	4	14	1	6	16	5	2	12
Adjusted Flow I	Rate (<i>v</i>), veh/h		184	552	109	245	532	300	217	756	172	264	253	242
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1755	1687	1502	1639	1772	1502	1688	1687	1502	1688	1772	1677
Queue Service	Time (g	g s), S		9.0	17.6	7.1	9.5	37.4	21.7	10.0	25.0	9.3	12.0	13.0	13.2
Cycle Queue C	learanc	e Time (<i>g c</i>), s		9.0	17.6	7.1	9.5	37.4	21.7	10.0	25.0	9.3	12.0	13.0	13.2
Green Ratio (g	/C)			0.38	0.31	0.31	0.09	0.33	0.33	0.48	0.38	0.47	0.50	0.40	0.40
Capacity (c), v				201	1033	460	304	585		470	1287	712	378	704	667
Volume-to-Capa		· ,		0.914	0.534	_	0.805	0.910		0.463	0.588	0.241	0.699	0.359	0.363
		In (95 th percentile)		260.8	296.7	118.4	183.2	613.3	_	180.5	410.7	169.2	211.2	246.8	235.9
		eh/ln (95 th percenti		10.3	11.7	4.7	7.2	24.1		7.1	16.2	6.7	8.3	9.7	9.4
		RQ) (95 th percent	ile)	0.82	0.59	0.37	0.41	1.23	_	0.56	0.82	0.56	0.66	0.49	0.48
Uniform Delay	` ,			35.5	37.4	33.7	57.8	41.7	_	21.4	37.6	21.6	23.3	27.5	27.6
Incremental De		,		39.5	0.2	0.1	1.9	7.8	0.4	0.2	1.8	0.7	0.9	1.4	1.5
Initial Queue De				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Control Delay (d), s/veh			75.0	37.6	33.8	59.7	49.5		21.6	39.4	22.4	24.2	28.9	29.1
	Level of Service (LOS)			E 45.0	D	С	E 40.0	D	D	C	D -	С	C 27.4	С	С
Approach Delay				45.2	<u>′ </u>	D	48.3	5	D	33.5)	С	27.4	+	С
Intersection De	iay, S/VE	en / LUS				39	9.0						D		
Multimodal Re	sulte				EB			WB			NB			SB	
Pedestrian LOS		/1.0S		2.45		В	2.29		В	2.44		 В	2.28		В
				1.18	_	A	2.26	_	В	1.24		A	1.11		A
210,010 200 00	cycle LOS Score / LOS					, ,	2.20			1.2-		7.	1.11		, ,

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resul	ts Sur	nmar	у				
	41								_		41			ا با جاء الجاء ا	L I
General Inforn	nation	1470						_	ntersec				_	111	** **
Agency		ATS				1.10	0000		Duration.		0.250		_7		P_
Analyst		RLA		<u> </u>		e Jul 6,		-	Area Typ	e	Other			w Î	*
Jurisdiction		MDT		Time F	erioa	Projec	cted AM	'	PHF		0.92		→ 	₩†= 8	* ←
Urban Street		Montana Avenue		Analys	is Yea	_			Analysis	Period	1> 7:0	00		K A 4	F
Intersection		Tara Court		File Na		_	naSign		projected				_]] ['	7 1
Project Descrip	tion	Town Pump				· ·									
Demand Inform					EB		-	WE	1		NB		-	SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	<u> </u>	Т	R
Demand (v), v	eh/h			100	10	46	24	14	8	57	384	16	12	930	69
Signal Informa	ation					- 5			<u> </u>	T					K
Cycle, s	130.0	Reference Phase	2	1	1	3 8	7								→
Offset, s	0	Reference Point	End		<u>*1</u>							1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		2 16.8 3.0	0.0	0.0	0.0	0.0			rt »		7
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	1.0	0.0	0.0	0.0	0.0	-	5	Y_6	7	❤ 8
				Jr.								•		,	
Timer Results				EBI	-	EBT	WB	L	WBT	NB	L L	NBT	SBI	-	SBT
Assigned Phas	е					8			4			6			2
Case Number						8.0			7.0			6.0			6.0
Phase Duration	1, S					20.8			20.8		1	109.2			109.2
Change Period		·				4.0			4.0			3.0			3.0
	Max Allow Headway (MAH), s					3.2			3.2			0.0			0.0
	Queue Clearance Time (g s), s					16.6			5.2						
	Green Extension Time (g e), s				_	0.3			0.4			0.0			0.0
Phase Call Pro					_	1.00		_	1.00						
Max Out Proba	bility					0.00			0.00						
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				3	8	18	7	4	14	1	6	16	5	2	12
Adjusted Flow	Rate (v), veh/h			170			41	9	62	218	216	10	430	420
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1485			1402	1525	659	1800	1774	969	1800	1756
Queue Service	Time (g	g s), S			11.4			0.0	0.6	3.4	3.3	3.3	0.2	8.7	8.5
Cycle Queue C	learanc	e Time (<i>g с</i>), s			14.6			3.2	0.6	12.0	3.3	3.3	3.5	8.7	8.5
Green Ratio (g	/C)				0.13			0.13	0.13	0.82	0.82	0.82	0.82	0.82	0.82
Capacity (c), \	/eh/h				238			227	198	550	1470	1449	822	1470	1434
Volume-to-Cap	acity Ra	ntio (X)			0.713			0.182	0.044	0.113	0.149	0.149	0.012	0.293	0.293
	. ,	In (95 th percentile)			234.3			54.5	11.2	21.1	43.3	42.9	1.7	119.2	112.9
l	<u> </u>	eh/ln (95 th percenti			9.4			2.2	0.4	0.8	1.7	1.7	0.1	4.8	4.5
		RQ) (95 th percent	tile)		0.00	-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay					55.5			50.5	49.5	4.5	2.5	2.5	2.1	3.5	3.4
Incremental De	- 1	•			1.5			0.1	0.0	0.4	0.2	0.2	0.0	0.5	0.5
	Initial Queue Delay (d 3), s/veh				0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Control Delay (d), s/veh				57.0			50.7	49.6	4.9	2.7	2.7	2.1	3.9	3.9
	Level of Service (LOS)			F7.0	E		F0.5		D	A	Α	_ A	A	A	_ A
Approach Dela				57.0		E 10	50.5)	D	3.0		Α	3.9		Α
Intersection De	iay, S/VE	ell / LUS				10	0.8						В		
Multimodal Re	sults				EB			WB			NB			SB	
	Pedestrian LOS Score / LOS					В	2.31		В	1.83		В	1.60		В
				2.31 0.77	_	A	0.57	_	A	0.90		A	1.39		A
,	cycle LOS Score / LOS														

		HCS	7 Sig	nalize	d In	tersec	tion F	Resul	ts Sur	nmar	у				
0 11 6	11										1.			المجاوليات	lu I
General Inforn	nation	470						_	ntersec				- 1	111	12 A
Agency		ATS		A l	:- D-4	- 1.10	0000		Duration.		0.250		_4		R
Analyst		RLA		<u> </u>		e Jul 6,		_	Area Typ	e	Other			v	*_
Jurisdiction		MDT		Time F	erioa	Proje	cted AM	'	PHF		0.92		-{ -{ -{ -{ -{ -{ -{ -{ -{ -{ -{ -{ -{ -	₩†= 8	* ∓ ← *c
Urban Street		Montana Avenue		Analys	is Yea	r 2023		7	Analysis	Period	1> 7:0	00		አ ላ ሴ	¢-
Intersection		Tara Court		File Na	ame	Monta	anaSign	alsPMp	orojected	l.xus				[제 하다	* *
Project Descrip	tion	Town Pump													
Damand Info	4!							١٨/٦			ND			OD	
Demand Inform				-	EB		+	WE	_		NB		+	SB	
Approach Move				170	T	R	L	T	R	100	T	R 100	L	T 750	R
Demand (v), v	en/n	_	-	170	30	48	80	18	84	109	800	100	44	759	42
Signal Informa	ition				ĮĮ,	5	4			\top					<u> </u>
Cycle, s	130.0	Reference Phase	2	1	1	, 🗐 🧯	<u> </u>								
Offset, s	0	Reference Point	End	Green	07.9	25.2	0.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.0	0.0	0.0	0.0	0.0	_		KŤ2		7
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	1.0	0.0	0.0	0.0	0.0		5	6	7	8
Timer Results				EBI		EBT	WB	L	WBT	NBI	_	NBT	SBI	<u> </u>	SBT
Assigned Phas	e				_	8			4			6	$oxed{oxed}$		2
Case Number					_	8.0		_	7.0			6.0			6.0
Phase Duration	·				_	29.2		_	29.2		1	100.8			100.8
Change Period	_ `				+	4.0	_	_	4.0		_	3.0	_		3.0
	Max Allow Headway (MAH), s Dueue Clearance Time (a s), s				_	3.2		_	3.2			0.0			0.0
	Queue Clearance Time (g s), s				_	25.1		_	11.1				_		
	Green Extension Time (g e), s				_	0.1		_	0.8		_	0.0	_	_	0.0
Phase Call Pro					+	1.00		-	1.00						
Max Out Proba	bility				_	1.00		_	0.00					_	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				3	8	18	7	4	14	1	6	16	5	2	12
Adjusted Flow I	Rate (v), veh/h			270			107	91	118	499	479	40	370	363
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1489			1327	1525	735	1800	1729	584	1800	1766
Queue Service	Time (g	g s), S			14.0			0.0	6.7	8.6	12.4	12.4	2.5	12.5	12.3
Cycle Queue C	learanc	e Time (<i>g ε</i>), s			23.1			9.1	6.7	21.1	12.4	12.4	15.2	12.5	12.3
Green Ratio (g	/C)				0.19			0.19	0.19	0.75	0.75	0.75	0.75	0.75	0.75
Capacity (c), v	/eh/h				336			308	296	537	1354	1300	439	1354	1328
Volume-to-Cap	acity Ra	itio (X)			0.803	3		0.346	0.308	0.220	0.369	0.369	0.092	0.273	0.273
		In (95 th percentile)			368			136.2		65.6	193.4	187.5	15.9	217.9	208.6
		eh/ln (95 th percenti			14.7			5.4	4.6	2.6	7.7	7.5	0.6	8.7	8.3
		RQ) (95 th percent	tile)		0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	` '				51.4			45.8	44.9	9.2	5.5	5.5	6.3	8.8	8.5
Incremental De		·			11.6			0.2	0.2	0.9	0.8	0.8	0.4	0.4	0.4
	Initial Queue Delay (d ȝ), s/veh				0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Control Delay (d), s/veh				63.0			46.0	45.1	10.1	6.3	6.3	6.7	9.2	8.9
	Level of Service (LOS)			00.0	E		45.4	D	D	B	A	A	A	Α	_ A
Approach Delay				63.0		E 1.	45.6	0	D	6.7		Α	8.9		Α
Intersection De	iay, S/VE	en / LUS				1	7.2						В		
Multimodal Re	sulte				EB			WB			NB			SB	
Pedestrian LOS		/LOS		2.31		В	2.3		В	1.85		В	1.63	-	В
				0.93	_	A	0.8	_	A	1.39	_	A	1.25	_	A
, 5 5 60	cycle LOS Score / LOS						3.3		-				\		

	HCS7 Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Town Pump approach
Agency/Co.	ATS	Jurisdiction	Lewis&Clakr
Date Performed	7/6/2022	East/West Street	NA
Analysis Year	2023	North/South Street	Montana
Time Analyzed	AM projected	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Town Pump - Montana		

		Major Street: North-South														
Vehicle Volumes and Ad	justme	nts														
Approach	Т	Eastb	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		0	0	0	0	0	1	0	0	0	1	0
Configuration		L		R						LT						TR
Volume (veh/h)		0		56						0	437				954	61
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized		١	10													
Median Type Storage	pe Storage Undivided															
Critical and Follow-up H																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т	0		61						0						
Capacity, c (veh/h)		125		267						629						
v/c Ratio		0.00		0.23						0.00						
95% Queue Length, Q ₉₅ (veh)		0.0		0.9						0.0						
Control Delay (s/veh)		33.7		22.4						10.7						
Level of Service (LOS)		D		С						В						
Approach Delay (s/veh)		22	2.4							0	.0					
Approach LOS			С													

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	TownPump approach
Agency/Co.	ATS	Jurisdiction	Lewis&Clakr
Date Performed	7/6/2022	East/West Street	NA
Analysis Year	2023	North/South Street	Montana
Time Analyzed	PM projected	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Town Pump - Montana		

					iviajoi	Street, NO	111-304111									
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		0	0	0	0	0	1	0	0	0	1	0
Configuration		L		R						LT						TR
Volume (veh/h)		0		46						0	987				841	62
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized		Ν	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up He																
Base Critical Headway (sec)	Π	7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0		50						0						
Capacity, c (veh/h)		63		315						699						
v/c Ratio		0.00		0.16						0.00						
95% Queue Length, Q ₉₅ (veh)		0.0		0.6						0.0						
Control Delay (s/veh)		61.7		18.6						10.1						
Level of Service (LOS)		F		С						В						
Approach Delay (s/veh)		18	3.6							0	.0					
Approach LOS		С														

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Tara Court approach
Agency/Co.	ATS	Jurisdiction	Lewis&Clakr
Date Performed	7/6/2022	East/West Street	Tara Court
Analysis Year	2023	North/South Street	NA
Time Analyzed	AM projected	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Town Pump - Montana		

Approach	T	Facth	oound			Westl	nound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			44	34		75	64			34		112				
Percent Heavy Vehicles (%)						3				3		3				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.43		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T					82					159					
Capacity, c (veh/h)						1505					886					
v/c Ratio						0.05					0.18					
95% Queue Length, Q ₉₅ (veh)			Ì			0.2					0.6					
Control Delay (s/veh)						7.5					9.9					
Level of Service (LOS)				Ì		А					А					
Approach Delay (s/veh)						4	.3			9	.9					
Approach LOS											Α					

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	RLA	Intersection	Tara Court approach					
Agency/Co.	ATS	Jurisdiction	Lewis&Clakr					
Date Performed	7/6/2022	East/West Street	Tara Court					
Analysis Year	2023	North/South Street	NA					
Time Analyzed	PM projected	Peak Hour Factor	0.92					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Town Pump - Montana							

Vehicle Volumes and Ad	justme	nts														
Approach		Eastbound			Westbound			Northbound			Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			140	15		78	92			23		109				
Percent Heavy Vehicles (%)						3				3		3				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T					4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.43		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т					85					143					
Capacity, c (veh/h)						1403					796					
v/c Ratio						0.06					0.18					
95% Queue Length, Q ₉₅ (veh)						0.2					0.7					
Control Delay (s/veh)						7.7					10.5					
Level of Service (LOS)						А					В					
Approach Delay (s/veh)					3.8			10.5								
Approach LOS							В									